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Reconstruction techniques in angular correlation of 
positron annihilation experiments 

Louis M Pecora 
Code 6341, Naval Research Laboratory, Washington DC 20375, USA 

Received 12 December 1988 

Abstract. Various techniques for the reconstruction of momentum densities from ZD-ACPAR 
and ID-ACPAR (angular correlation of positron annihilation radiation) data are reviewed. 
Emphasis is placed on spherical harmonic reconstruction techniques. Results of the recon- 
struction of the Fermi surface of vanadium are included. The possibility of obtaining wave- 
function or quantum density matrix information from the momentum density is also 
mentioned. 

1. Why reconstruction? 

Angular correlation of positron annihilation (ACPAR) experiments measure a distri- 
bution which is close to the momentum density of a solid, p ( p ) ,  but they do not 
measure p ( p )  directly. Rather they measure an integral of p ( p )  over a straight line (two- 
dimensional ACPAR) or flat plane (one-dimensional ACPAR) in momentum space. Figure 
1 shows a typical situation in two-dimensional ACPAR (hereafter referred to as2~-ACPAR). 
In this sense, the data are a 'projection' of p ( p )  onto a lower-dimensional space. 

In addition, electronic many-body effects require that a different distribution, p2' (p) ,  
be used in place of p ( p )  in the formulation of the relationship between the data and the 
momentum density. For the purposes of this article this difference will be ignored and 
p(p)  will be written, even though p2Q) is required. 

The data will be defined by the resolved electron momenta, p z  in iD-AcPAR and p x  
andp, in 2~-ACPAR. The sample orientation will also determine the nature of the data. 
The orientation is given by a rotation, R ,  from the laboratory frame of reference to 
a fixed frame in the sample (usually aligning with the crystallographic axes). These 
dependences are explicitly shown in all the equations by writing nR(pZ)  for 1D-ACPAR and 
nR(px ,  p , )  for 2D-ACPAR. 

The relationships between p(p)  and the data are 

data = n R ( p Z )  = 11-y P(P> dpx dp, 

data = n R ( p , , p , )  = 1 P(P> dpz 

(1) 

( 2 )  
+ E  

-m 

for ID- and 2~-ACPAR, respectively. 
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Detector 1 Detector 2 

I Figure 1. Typical 2D-ACPAR arrangement. The 
equations relating the positions of the detected 
gamma rays to the resolved momenta are 
x ,  + x 2  = Ax - p , , y ,  + y ,  = Ay - p ) ;  inFourier- 
spacep, m,c = Ox,py/m,c = 0, (mrad). ! (X2.Y21 

Because of the intimate relationship between p(p)  and the electronic wavefunction, 
it would be especially convenient to be able to extract p(p)  from the data. The process 
of reconstruction is an attempt to do just this. Several reconstruction techniques have 
been applied over the last two decades to ACPAR data. Before reviewing these individual 
techniques some mathematical ideas need to be explored. 

2. The mathematics of the reconstruction problem 

The problem of obtaining a function from its integrals over planes or lines was first solved 
by Radon (1917). In practice, applications of any reconstruction technique, except in 
some simple situations, require a computer. Thus, it is only in the last two decades that 
reconstruction solutions have proliferated and have been successfully applied in many 
fields. For a good mathematical overview of the reconstruction problem the reader is 
referred to Deans (1983). 

One of the most useful mathematical results in developing reconstruction techniques 
and algorithms is the central slice theorem (Deans 1983). There are ID-ACPAR and 2D- 
ACPAR versions of this theorem. The two-dimensional version is as follows: the Fourier 
transform of the data equals the Fourier transform of p(p)  restricted to aplane in Fourier 
space whose normal is given by the rotation R. This is illustrated in figure 2. The one- 
dimensional version has the Fourier transform of the data being equal to the Fourier 
transform p(p)  restricted to a line in Fourier space the orientation of which is given by 
the rotation R. 

Mathematically, if a(r) is the Fourier transform of p(p)  and if FT stands for Fourier 
transform (with respect to all resolved momenta variables in the data) 

FT[nR(p2>1 = + L o  (3) 

F T b R ( P * > P , ) l  = 4 r ) l x = o . y - o  (4) 
for ID- and 2 ~ - A C P A R ,  respectively, where x ,  y ,  and z are the coordinates in the rotated 
system. These relations are easy to derive from equations (1) or (2) by writing equations 
(1) or (2) as Fourier transforms in which the Fourier variable(s) conjugate to the integral 
momenta variables are constrained to be zero. Relations (3) and (4) immediately suggest 
schemes to reconstruct p(p)  from the data by going to Fourier space. Several have been 
applied to ACPAR data and are reviewed below. 

Not all reconstruction techniques need to involve Fourier transforms. Several have 
been developed which involve analysis and algorithms in momentum space only. These 
are also reviewed below. 

Three major categories of reconstruction schemes are covered here. The first is back- 
projection techniques which are commonly used in medical applications, like CAT scans. 
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The second is a restricted problem of reconstructing p ( p )  on a plane in momentum 
space. The third uses an expansion of p ( p )  in spherical harmonics. 

One further problem actually remains. Although reconstructions can be done with 
any of these schemes on almost any available data, the quality of the reconstruction is 
not always immediately apparent. In other words, how much reliance should one place 
on the reconstruction? With few exceptions this remains a largely unaddressed problem. 
Yet this problem remains central to the question of reconstruction. 

One approach, used in many other data analysis schemes, is to calculate the expected 
error based on the assumption of statistically independent error distributions for each 
data point. This leads to the calculation of the deviation or mean square error A p 2 ( p )  at 
each point in momentum space. For example, for 2 ~ - A C P A R  if the reconstruction scheme, 
whatever it may be, is written as a (linear) operator%(p; R,p , ,p , ) ,  then the mean square 
error is given by 

where An2(R,p, ,p , )  is the mean square error for theR sample orientation at theresolved 
momentap,,p, and all integrations and sums over repeated variables are implicit on the 
right-hand side of equation (5). The calculation of % ( p ;  R ,  p x ,  p , )  is itself a formidable 
task, so the calculation of [%(p; R,  p x ,  p,)I2 can be quite complicated and time con- 
suming. Nevertheless, it remains important for all reconstruction schemes. As yet, it 
also appears to remain unsolved or not performed for any reconstruction scheme. It is 
the next important problem to solve in this type of analysis of positron annihilation data. 

If equation (5) cannot be used, then there are other approaches to estimating the 
error in a reconstructed image. These include the reconstruction of noise (representing 
errors in the data), the reconstruction of models and, better still, theoretical momentum 
densities. The reader is referred to Mijnarends (1967,1979), Pecora (1987), and Hansen 
(1980) for more on this important topic. 

2.1. Backprojection reconstruction 

The basic idea here is to use the central slice theorem to get an estimate a’(r) of a(r) in 
the hope that in some sense ~ ’ ( r )  = a(r).  Then using the inverse Fourier transform, 
p ’ ( p )  can be reconstructed with the hope that p ’ ( p )  = p ( p ) .  The calculation of a(r) from 
the data involves taking the Fourier transform of the data and then interpolating in 
Fourier space to get a(r) at points not in the planes defined by the central slice theorem. 

Most 2D-ACPAR versions of this technique are developed for reconstruction of p ( p )  
in a plane in momentum space. The whole three-dimensional object, p ( p ) ,  is then built 
up from laminating many planes together. This requires sets of data that are taken by 
rotating the sample about one axis only, that is all the Rs are rotations of various 
magnitudes about the same axis. This greatly restricts the acquisition of data, but in 
high-symmetry situations a choice of one of the high-symmetry axes as the rotation axis 
can facilitate the process. 

The calculations in Fourier space can actually be done analytically if a suitable ‘cut- 
off‘ is chosen (Deans 1983, Brooks and DiChiro 1976, Cormack 1973). One is then left 
with a scheme in which, with a modifying filter, the data sets (or profiles) are translated 
over a line which goes through the origin at an angle equal to the orientation of the 
sample with respect to that plane and are added together over the same plane in 
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Figure 2. Central slice theorem for 2D-ACPAR in 
I Fourier space. 

Figure 3. Reconstruction of the third zone Fermi surface of vanadium by Manuel (1982): 
(a)  experiment, ( b )  theory. 

momentum space. This view of the reconstruction process is the origin of the term ‘back 
projection’. 

The first use of back projection in the reconstruction of the momentum density from 
2 ~ - A C P A R  was also the first fully three-dimensional reconstruction (Berko 1983). This 
reconstruction of the momentum density of Cu shows, correctly, many of the anisotropies 
in the p(p)  of Cu. There was also a later attempt by this group (Sinclair et a1 1982) to 
extract many-body enhancement parameters from the reconstruction. 

Another back-projection reconstruction was done by Waspe and West (1982) on 2D- 
ACPAR from Gd. Analysis of the p(p)  of Gd was aided in this work by the additional 
folding of the Gd p(p)  back into the first Brillouin zone using the Lock-CrispWest 
(LCW) theorem (Lock et a1 1972) to show the Fermi surface outlines. 

A more recent use of the LCW theorem in conjunction with back-projection recon- 
struction was by Manuel (1982) in the reconstruction of the third-zone Fermi surface of 
vanadium. As can be seen in figure 3, this yielded a reconstruction which was in very 
good agreement with band-structure predictions. However, it proved difficult to get the 
second-zone Fermi surface. This difficulty was overcome with the use of the spherical- 
harmonic Fourier-space reconstruction scheme reviewed in § § 2.3.2 and 2.3.4. 
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Figure 4. Reconstruction of p ( p )  for Cu 
(curve A) and Cu9,Ge, (curve B) along 
[ 1001 showing the changes in the 5-9 mrad 
region (Pecora and Ehrlich 1981). 

Recently, Suzuki and Tanigawa (1988) have implemented a Fourier-space recon- 
struction scheme based on the central slice theorem which does not use the analytically 
calculated back-projection filter, but directly interpolates in Fourier space to get a(r) 
and then calculates the inverse Fourier transform to get p(p). Whether this is superior 
to other methods or, perhaps, more appropriate in certain circumstances remains to be 
seen. At present their model calculations require four to six data directions for high- 
quality reconstructions. 

2.2. Planar ZD reconstruction 

In certain experimental cases, often called point geometry set-ups, one gets data which 
is 2 ~ - A C P A R ,  but restricted to a particular plane in momentum space. In this case the 
original formulation of Cormack (1963,1964) or a variation of it can be used to recon- 
struct p(p) in the momentum space plane. 

Mathematically the problem is one of obtaining data whose relation to p(p) is 

withp, fixed. It has been shown by Pecora and Ehrlich (1979) that p(p) can be recon- 
structed from the restricted data in equation (6) using a scheme similar to that of 
Cormack (1963,1964). This expands p(p) and the data in a polar Fourier series and the 
reconstruction is done by the resulting relationships between the series’ coefficients, 
namely 

m 
(7) 

This scheme was applied to the reconstruction of p(p) in the (011) and (111) planes 
of Cu and a-phase Cu, -xGes alloys for x = 0.03, 0.06, and 0.08 (Pecora and Ehrlich 
1985). Figure 4 shows the results of this reconstruction in Cu and CuyzGes along the [loo] 
direction. The difference in the anisotropy in the 6-8 mrad region is obvious and was 
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attributed to changes in the s-d hybridisation in the a-phase of these alloys as Ge  is 
added to Cu (Pecora and Ehrlich 1981). 

Other work using planar ZD reconstruction by Kortrym-Sznajd (1982) has shown 
that many variations on this approach can lead to workable reconstruction schemes. 
Formulae like equations (7) and (8) can also be used to reconstruct three-dimensional 
images of p(p) from 2 ~ - A C P A R  similar to the back-projection approach of laminating the 
planar reconstructions together. This appears not to have been attempted, as yet. 

2.3. Spherical harmonic reconstruction 

Many reconstruction schemes have as their basis the expansion of the desired object, 
p(p), in certain functions along with a technique for extracting the unknown expansion 
coefficients from the data. The use of spherical harmonic expansions has been a promi- 
nent, as well as fruitful, approach in positron annihilation reconstruction schemes. 
Spherical harmonic reconstruction (SHR) schemes have been applied to iD-ACPAR and 
2 ~ - A C P A R  both directly in momentum space and through Fourier space. The devel- 
opments of these schemes are interrelated. 

2.3.1. ID-ACPAR momentum space spherical harmonic reconstruction. The first recon- 
struction scheme for the extraction of p(p) from the experimental data was devised by 
Mijnarends (1967) using a SHR method in momentum space. The basis of this approach 
is to write 

P b )  = 2 P/m(P)YIm(Op, 4%) (9) 
/I?l 

wherep, O p ,  and q, are the spherical coordinates ofp and Y ,  are the spherical harmonics. 
Mijnarends then showed that one can expand the data in a similar way: 

where /3, adefine the sample orientation. 

struction, namely 
This leads to the relationship between expansion coefficients which allows recon- 

where the PI are Legendre polynomials. 
Mijnarends applied this to Cu 1D-ACPAR data (Mijnarends 1969) to show that using 

this technique one could reveal structure in p(p) which was not obvious from the data. 
For example the anisotropy in p(p) from 6-8 mrad comparing the two directions [ 1001 
and [110] stands out and was later shown to be intimately connected with the band 
structure (Mijnarends 1972). 

One restriction on the above spherical harmonic expansion is that the number of 
terms in each reconstruction must be less than or, at most, equal to the number of 
independent data sets available. This restriction has some consequence in positron 
annihilation since obtaining large data sets has been difficult and time consuming. The 
result of attempting reconstruction with a small number of data sets can be seen in the 
wildly oscillating resultsfor Cu, Ag, Au, Mg, and Cd (Pajak eta1 1976) and the featureless 
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momentum density reconstructed from three Compton profile directions (Das et a1 
1988), although the latter also suffers from poor data resolution. 

2.3.2. ID-ACPAR Fourier-space spherical harmonic reconstruction. A method similar to 
Mijnarends momentum space scheme was devised by Hansen (1980). This uses the 
central slice theorem to obtain a(r) on lines in Fourier space. The next step is to expand 
u(r) in a series of spherical harmonics 

wherep, 8, and qa re  again the spherical coordinates of r .  It is easily (Deans 1983) shown 
that the coefficients alm(r) are related to the coefficients p lm(p)  of the expansion of p(p)  
in spherical harmonics by a Hankel transform 

plm(P) 2. lomj,(Pr)u/m(r)r2 d r  (13) 

where j I (  pr) is a spherical Bessel function of the first kind. Thus, like Mijnarend's (1967) 
iD-AcPAR momentum space SHR, the scheme of Hansen et a1 (1987) gives a similar 
expansion of p(p),  and is likewise limited to the same restriction that the number of 
coefficients p lm(p)  determined is less than or equal to the number of independent data 
sets. 

This technique was applied to silicon. Hansen et a l ( l987)  were able to extract the 
anisotropic contribution to p(p) in silicon by this method. In the same paper they make 
attempts to obtain error estimates on their reconstructions, something that is often sadly 
lacking in other reconstruction work. 

2.3.3. 2 ~ - A C P A R  momentum space spherical harmonic reconstruction. Majumdar (1971) 
showed, using elegant mathematical analysis, that it was possible to reconstruct p ( p )  
from 2 ~ - A C P A R  data using a spherical harmonic expansion. The reconstruction was done 
in momentum space and, in a sense, is a higher dimensional version of Mijnarend's 
scheme. 

The first step in this analysis is to rewrite equation ( 9 )  in a rotated coordinate system, 
taken to be that of the laboratory frame 

where DL,, (R )  is the matrix of coefficients relating spherical harmonics in the sample 
frame to those in the laboratory frame and 19; and rp; are spherical coordinates of p in 
the laboratory frame. He  then showed that the data for each data set could be expanded 
in polar coordinates, s and q;, in the data plane 

This means that the polar Fourier coefficients g[m(s)  can in principle be found from 
one data set. He then showed that a Mellin transform relates p I m ( p )  and gIm(s). This 
transform is a complicated contour integral in complex variables involving hyper- 
geometric functions. However, the important thing to note is that one data set provides 
information on many p I m ( p )  coefficients. This is in contrast to the 1D-ACPAR SHR schemes 
and it results from the two-dimension nature of the data. With this approach one can get 
more p I m ( p )  than there are data sets. 
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Table 1.  Comparison between high- and low-symmetry cases in ZD-ACPAR reconstruction 
using double-precision computer calculations. 

R Euler angles 

Number Number Highest 
of data sets o( p y of coefficients [-value 

1 (highsymmetry) 0 0 0 1 0 

2(highsymmetry) 0 0 0 - - 

Z(1owsymmetry) 71 33 0 - - 

1 (lowsymmetry) 71 33 0 10 16 

0 4 5 0  5 10 

54 43 0 30 32 

Table 2. The four basic types of reconstruction technique using spherical harmonics (SHR), 
listing their authors 

SHR technique 

Correlation method Momentum space Fourier space 

ID-ACPAR Mijnarends (1967) Hansen (1980) 
2D-ACPAR Majumdar (1971) Pecora (1987) 

(Howells and Osmon 1972) 

On a practical level, one would want to use more than one data set, since information 
on particular p,,(p) coefficients may not be present or may be less than the noise or 
error level. This can occur, for example, in data planes that are also high-symmetry 
planes in the sample, so that the spherical harmonics have nodes, or zeros, in these 
planes and therefore do not contribute to the data. 

Because of the complexity involved, Majumdar’s (1971) technique was apparently 
never applied to ZD-ACPAR data. However, it stimulated the development of another 
similar scheme which turned out to be practical and at the same time enjoyed the 
advantage of having, in principle, no restriction on the number of coefficients of p ( p )  
determined from the data. 

Howells and Osmon (1972) also developed a reconstruction scheme similar to that 
of Majumdar (1971). This include the expansion of the coefficients in special functions 
depending on the radial variable r.  Apparently, this method has never been tried on 
data. 

2.3.4. ZD-ACPAR Fourier-space spherical harmonic reconstruction. This technique was 
developed by Pecora (1987) and in its relationship to Majumdar’s (1971) 2D-ACPAR SHR 
scheme is analogous to that of Hansen (1980) and its relationship to Mijnarend’s (1967) 
scheme for iD-AcPAR data. This two-dimensional scheme was also developed inde- 
pendently by Vogel et a1 (1986) who applied it successfully to image reconstruction 
electron microscopy scans. They also show an extention to this method which expands 
the coefficients of p(p)  in special functions. This last extension will not be discussed 
here. 
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Figure 5. Vanadium p ( p )  in the (001) plane: (a) reconstructed data from experiment, and 
(b )  theory (Pecora ef a/ 1988). 

Following Majumdar (1971) we expand p ( p )  in a series of spherical harmonics. As 
in Hansen's work, this leads to a series expansion of o(r) in spherical harmonics. Now, 
we rotate to a coordinate system in Fourier space that is aligned with the laboratory 
coordinate system. This gives for a(r) 

Because Ylm(O, q )  = N[,Plm(cos 0)  e"p, it is natural to take the polar Fourier transform 
of a(r). Using equation (16) this gives 

which holds form'  = 0,1,2,  . . . . This means that, as in Majumdar's (1971) momentum 
space scheme, we can find several unknown coefficients ai,(r) from one data set. Since 
pl , (p)  and olm(r) are related through a Hankel transform (equation (13)) we would get 
many terms in the expansion of p ( p ) .  Again, we would want numerical stability when 
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Figure 6. Radial slice of p(p) in figure 5 
along the [11O] direction: -, recon- 
structed experiment; - --, reconstructed 
theory. Inset: pure theory. p,(p) (Pecora 
etal1988). 

18 - 

Figure 7. Radial slice of p(p) in figure 5 
along a direction parallel to [OlO] in the 
(001) plane and displaced 1.34 au from the 
origin: -, reconstructed experiment; - 
- -, reconstructed theory. Inset: direction 
of slice with respect to crystallographic -2 - 1  0 1 2 

p iaui axes. 

solving equation (17), so we would actually want to have several data sets. But we would 
get more coefficients p,,(p) than we had data sets, in contrast to the iD-ACPAR case. 

In the case of crystal symmetry one gets even better reconstructions by using the 
appropriate symmetry lattice harmonics in place of the spherical harmonics. These are 
linear combinations of spherical harmoncis. This is one of the advantages of using lattice 
harmonics. The spherical harmonics which are not appropriate are automatically omitted 
and the resulting reconstruction has the proper symmetry. This is implemented below 
for cubic harmonics. 

Another feature in the ZD-ACPAR reconstruction work stands out more clearly here 
than elsewhere and that is that data sets are best taken not in high-symmetry planes, as 
is traditionally done in positron annihilation, but in low-symmetry planes. This is true 
for many kinds of reconstruction schemes, but becomes more apparent here when one 
examines the inversion of equation (17) to obtain olm(r). If the data is taken in high- 
symmetry planes, then the problem of some of the spherical harmonics having nodes in 
that plane prevents solution of equation (17) for any arbitrary number of terms. Table 1 
shows a comparison between high- and low-symmetry cases when using double- 
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Figure 8. A surface of p ( p )  parallel to the (001) plane displaced 4.14 mrad (n /a )  from the 
origin along the [OOl]  axis (a )  reconstructed experiment, (b )  theory (Pecora et a1 1988). 

precision (8 byte floating-point) computer calculations. Hence, for two directions in 
cubic symmetry, one can get the first 30 coefficients in the expansion of p(p). Of course, 
we have not done an error analysisof this case. This has been done elsewhere (Pecora 
1987) for this situation. 

With the implementation of a 2 ~ - A C P A R  Fourier-space SHR scheme, the four basic 
types of reconstruction using spherical harmonics are now available. The relationship 
between these is evident from table 2, which lists the authors of the main techniques in 
the field of positron annihilation and Compton scattering. 

3. Reconstruction of the momentum density of vanadium 

The 2 ~ - A C P A R  Fourier-space SHR scheme was applied to four data sets taken in the (loo), 
(110), (111) and (211) planes of vanadium. The details of the experiment are given 
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Figure 9. Reconstructions of (a )  the second and (b )  third zone Fermi surfaces of vanadium. 

elsewhere (Bisson et a1 1982). The details of this reconstruction are given in Pecora et a1 
(1988). The resolution of the data was 0.041 X 0.068 au2 and the total number of counts 
was approximately 6 x lo7 for each data set. The largest number of cubic harmonic 
terms obtainable in the reconstruction under these circumstances was 40. However, only 
the first 25 were of a large enough amplitude to affect the reconstruction. The remaining 
26-40 were below the expected noise level and their addition did not affect the results. 

These results were compared to theory (Singh and Singru 1982), both directly and 
by reconstruction of the theoretical p(p)  from ‘data’ generated by the theory in the same 
planes as in the experiment. 

Figure 5 shows the results of the reconstruction for the (001) plane of vanadium. In 
the same figure the theoretical p ( p )  in the same plane is shown for comparison. As would 
be expected, the theory shows sharper structure, but the main features of the theory are 
present in the reconstruction. The depressions caused by the N-centre ellipsoids (NCE) 
along the (110) directions are clearly visible. The depressions caused by the r-centred 
octahedral (GCO) hole-bands and, to a lesser extent, the jungle gym arms (JGA) are 
evident further out in the same directions. 

Two ‘cuts’ through the surfaces in figure 5 are shown in figures 6 and 7. In figure 6 
are radial slices along [ 1 101, one from the 2D-ACPAR reconstruction and the other from 
reconstructed theoretical data. There is excellent agreement between the two and a lack 
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Figure 10. Cross sections of the vanadium jungle 
gym arms (JGA) compared to APW theory (Papa- 
constantoupolos et ai 1972). Contours plots: 
reconstruction; shapes: APW calculation. The 
dark contours on the reconstruction plots cor- 
respond to theFermilevel. ( a )  0.2 TH, (b)0.3 TH, 
( c )  0.4 TH, (d )  0.5 TH, ( e )  0.6 TH, (f) 0.7 TH. 

of artifacts in the theoretical reconstruction. In figure 7 the slices are tangent to a circle 
of radius 1.34 au. This figure shows not only a good agreement between the reconstructed 
theory and experiment, but also displays good resolution, which is essentially angular 
resolution. 

Figure 8 shows a comparison of (001) surfaces of the theory (without reconstruction) 
and the reconstructed experimental data. The surfaces in this figure are displaced 
4.14 mrad from the origin along the [001] axis. 

Since one hasp(p) it is posible to follow the method of Lock et al(1972) and calculate 
an approximation to the number density in k-space, v ( k ) ,  and, therefore, plot the Fermi 
surfaces of the material. Knowing v ( k )  in this way does not give the true number density, 
since the positron selectively annihilates with the electrons. This means that in order to 
choose values of v (say v 2  and vg) to correspond to Fermi levels of the second and third 
zones we need another criterion. In this case the criterion for the third zone was to 
choose v 3  so as to keep the size of the NCES equal to the values found by Parker and 
Halloran (1974). For the second zone the only criterion was to keep it near the size found 
by the band theory. Nothing quantitative is done with the second zone surface. 

Figure 9 shows a reconstruction of the second and third zone Fermi surfaces. The 
agreement with theory (Singh and Singru 1982) and with previous work on a recon- 
structed vanadium Fermi surface (Manuel 1982) is very good. In addition this recon- 
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Figure 11. Cross section of the N-centred ellipsoids (Pecora et a1 1988). Inset shows position 
and orientation of the cross section with respect to the crystal. 
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Figure 12. Percents, p, and d contribution to the hybrid- 
ised wavefunction from =5 to =9mrad along [loo] 
(Pecora 1986) of Cu (-) and Cu,*Ge, (---). 
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struction scheme has enabled the reconstruction of the second zone surface for the first 
time. Figure 10 shows cross sections of the JGA from the reconstruction compared to an 
APW calculation (Papaconstantopoulos etall972). The overall shape and size agree well. 
Figure 11 shows a cross section of the NCE. The ratio of the major to minor axes of the 
ellipses in this figure is 1.36, independent of what contour is chosen around the N point. 
This agrees well with the measurements of Parker and Halloran (1974) which was 1.27. 

4. Reconstruction of the quantum density matrix 

It is possible to take another step in the reconstruction process, namely to obtain 
information on the quantum density matrix of the bands contibuting to p ( p ) .  The 
possibility of extracting quantum density matrices from experimental data has been 
under investigation for some time by many workers investigating x-ray scattering in 
solids (Goldberg and Massa 1983, Clinton and Massa 1972, Pecora 1986). A complete 
review of this topic is beyond the scope of this paper, but it is an appropriate area of 
investigation for anyone doing reconstruction of 2 ~ - A C P A R  data, since it might allow the 
possibility of obtaining information about wave functions from reconstructions. The 
reader is referred to Goldberg and Massa (1983), Clinton and Massa (1972) and Pecora 
(1986) for more thorough explanations, including the application of this technique to 
positron annihilation. 

Any measurement aq can be represented by the formula aq = Tr(POq), where Tr is 
the trace operation, P is a population matrix (a quantum density matrix in a particular 
representation) and 0 4  is the operator corresponding to the measurement. For example 
in the case of positron annihilation, Pis the population of the contributing bands and OP 
would be the (selective) annihilation of the positron with those bands. Then p ( p )  = 
Tr( POP). 

Pecora (1986) has shown that it is possible to use a constrained minimisation pro- 
cedure to obtain P from p ( ~ ) .  An application of this procedure to Cu and Cu,,Ge8 is 
shown in figure 12. This demonstrates more quantitatively the suggestion that the s-d 
hybridisation was changing with Ge concentration (Pecora and Ehrlich 1981). 

Because other one-particle observables exist, this implies that one can calculate other 
quantities (like the real-space charge density of only those electrons with certain k- 
vectors) and compare them to other experiments and theory. The implications for 
positron annihilation are great, but much more work must be done on this topic to clarify 
the scheme and assure reliability of the quantum density matrix extracted. 
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